G2: A Graph Processing System for Diagnosing Distributed Systems

نویسندگان

  • Zhenyu Guo
  • Dong Zhou
  • Haoxiang Lin
  • Mao Yang
  • Fan Long
  • Chaoqiang Deng
  • Changshu Liu
  • Lidong Zhou
چکیده

G2 is a graph processing system for diagnosing distributed systems. It works on execution graphs that model runtime events and their correlations in distributed systems. In G2, a diagnosis process involves a series of queries, expressed in a high-level declarative language that supports both relational and graph-based operators. Each query is compiled into a distributed execution. G2’s execution engine supports both parallel relational data processing and iterative graph traversal. Execution graphs in G2 tend to have long paths and are in structure distinctly different from other largescale graphs, such as social or web graphs. Tailored for execution graphs and graph traversal operations on those graphs, G2’s graph engine distinguishes itself by embracing batched asynchronous iterations that allows for better parallelism without barriers, and by enabling partition-level states and aggregation. We have applied G2 to diagnosis of distributed systems such as Berkeley DB, SCOPE/Dryad, and G2 itself to validate its effectiveness. When co-deployed on a 60machine cluster, G2’s execution engine can handle execution graphs with millions of vertices and edges; for instance, using a query in G2, we traverse, filter, and summarize a 130 million-vertex graph into a 12 thousandvertex graph within 268 seconds on 60 machines. The use of an asynchronous model and a partition-level interface delivered a 66% reduction in response time when applied to queries in our diagnosis tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automating Performance Diagnosis in Networked Systems

Title of dissertation: AUTOMATING PERFORMANCE DIAGNOSIS IN NETWORKED SYSTEMS Justin N. McCann, Doctor of Philosophy, 2012 Dissertation directed by: Professor Michael W. Hicks Department of Computer Science Diagnosing performance degradation in distributed systems is a complex and difficult task. Software that performs well in one environment may be unusably slow in another, and determining the ...

متن کامل

An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm

Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed system. In this algorithm, a process which...

متن کامل

Adaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems

This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...

متن کامل

A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems

Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...

متن کامل

Self-Starting Control Chart and Post Signal Diagnostics for Monitoring Project Earned Value Management Indices

Earned value management (EVM) is a well-known approach in a project control system which uses some indices to track schedule and cost performance of a project. In this paper, a new statistical framework based on self-starting monitoring and change point estimation is proposed to monitor correlated EVM indices which are usually auto-correlated over time and non-normally distributed. Also, a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011